Bi-banded paths, a bijection and the Narayana numbers
نویسنده
چکیده
We find a bijection between bi-banded paths and peak-counting paths, applying to two classes of lattice paths including Dyck paths. Thus we find a new interpretation of Narayana numbers as coefficients of weight polynomials enumerating bi-banded Dyck paths, which class of paths has arisen naturally in previous literature in a solution of the stationary state of the ‘TASEP’ stochastic process.
منابع مشابه
Kirillov's Unimodality Conjecture for the Rectangular Narayana Polynomials
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillov’s unimodality conjecture. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between...
متن کاملIdentities from Weighted 2-Motzkin Paths
Based on a weighted version of the bijection between Dyck paths and 2-Motzkin paths, we find combinatorial interpretations of two identities related to the Narayana polynomials and the Catalan numbers, in answer to two problems recently proposed by Coker. AMS Classification: 05A15, 05A19
متن کاملIdentities from Weighted Motzkin Paths
Based on a weighted version of the bijection between Dyck paths and 2-Motzkin paths, we find combinatorial interpretations of two identities related to the Narayana polynomials and the Catalan numbers. These interpretations answer two problems posed recently by Coker. AMS Classification: 05A15, 05A19
متن کاملWeighted 2-Motzkin Paths
This paper is motivated by two problems recently proposed by Coker on combinatorial identities related to the Narayana polynomials and the Catalan numbers. We find that a bijection of Chen, Deutsch and Elizalde can be used to provide combinatorial interpretations of the identities of Coker when it is applied to weighted plane trees. For the sake of presentation of our combinatorial corresponden...
متن کاملA bijection on bilateral Dyck paths
It is known that both the number of Dyck paths with 2n steps and k peaks, and the number of Dyck paths with 2n steps and k steps at odd height, follow the Narayana distribution. In this paper we present a bijection which explicitly illustrates this equinumeracy. Moreover, we extend this bijection to bilateral Dyck paths. The restriction to Dyck paths preserves the number of contacts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 48 شماره
صفحات -
تاریخ انتشار 2010